A more efficient parallel method for neighbour search using CUDA

Daniel Morillo, Ricardo Carmona, Juan J. Perea, Juan M. Cordero

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

3 Citas (Scopus)

Resumen

In particle systems simulation, the procedure of neighbour searching is usually a bottleneck in terms of computational cost. Several techniques have been developed to solve this problem; one of particular interest is the cell-based spatial division, where each cell is tagged by a hash function. One of the most useful features of this technique is that it can be easily parallelized to reduce computational costs. However, the parallelizing process has some drawbacks associated to data memory management. Also, when parallelizing neighbour search, the location of neighbouring particles between adjacent cells is also costly. To solve these shortcomings we have developed a method that reduces the search space by considering the relative position of each particles in its own cell. This method, parallelized using CUDA, shows improvements in processing time and memory management over other “standard” spatial division techniques.

Idioma originalInglés
Título de la publicación alojada12th Workshop on Virtual Reality Interactions and Physical Simulations, VRIPHYS 2015
EditoresJaillet Fabrice, Florence Zara, Gabriel Zachmann
EditorialEurographics Association
Páginas101-109
Número de páginas9
ISBN (versión digital)9783905674989
DOI
EstadoPublicada - 2015
Publicado de forma externa
Evento12th Workshop on Virtual Reality Interactions and Physical Simulations, VRIPHYS 2015 - Lyon, Francia
Duración: 04 nov. 201505 nov. 2015

Serie de la publicación

Nombre12th Workshop on Virtual Reality Interactions and Physical Simulations, VRIPHYS 2015

Conferencia

Conferencia12th Workshop on Virtual Reality Interactions and Physical Simulations, VRIPHYS 2015
País/TerritorioFrancia
CiudadLyon
Período04/11/1505/11/15

Huella

Profundice en los temas de investigación de 'A more efficient parallel method for neighbour search using CUDA'. En conjunto forman una huella única.

Citar esto