A fuzzy clustering based method for the spatiotemporal analysis of criminal patterns

Diego Mayorga, Miguel A. Melgarejo, Nelson Obregon

Producción: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

6 Citas (Scopus)

Resumen

This paper presents a method for analyzing patterns of criminal activity that occur in space and time. The method uses the fuzzy C-means algorithm to cluster criminal events in space. In addition, a cluster reorganization algorithm is included to preserve the order of fuzzy partitions from one time step analysis to another. Order preservation is possible since crime forms relatively stable patterns due to the fixed shape of urban spaces and routine activities of people. The method provides a novel way to analyze criminal directionality, since it generates time series from clustering. A sample database of robberies in San Francisco, USA, is used to test the algorithm. Results show that criminal patterns might be tracked in a simple way.

Idioma originalInglés
Título de la publicación alojada2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas738-744
Número de páginas7
ISBN (versión digital)9781509006250
DOI
EstadoPublicada - 07 nov. 2016
Evento2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016 - Vancouver, Canadá
Duración: 24 jul. 201629 jul. 2016

Serie de la publicación

Nombre2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016

Conferencia

Conferencia2016 IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2016
País/TerritorioCanadá
CiudadVancouver
Período24/07/1629/07/16

Huella

Profundice en los temas de investigación de 'A fuzzy clustering based method for the spatiotemporal analysis of criminal patterns'. En conjunto forman una huella única.

Citar esto