A Flexible Profile-Based Recommender System for Discovering Cultural Activities in an Emerging Tourist Destination

Isabel Arregocés-Julio, Andrés Solano-Barliza, Aida Valls, Antonio Moreno, Marysol Castillo-Palacio, Melisa Acosta-Coll, José Escorcia-Gutierrez

Producción: Contribución a una revistaArtículorevisión exhaustiva

Resumen

Recommendation systems applied to tourism are widely recognized for improving the visitor’s experience in tourist destinations, thanks to their ability to personalize the trip. This paper presents a hybrid approach that combines Machine Learning techniques with the Ordered Weighted Averaging (OWA) aggregation operator to achieve greater accuracy in user segmentation and generate personalized recommendations. The data were collected through a questionnaire applied to tourists in the different points of interest of the Special, Tourist and Cultural District of Riohacha. In the first stage, the K-means algorithm defines the segmentation of tourists based on their socio-demographic data and travel preferences. The second stage uses the OWA operator with a disjunctive policy to assign the most relevant cluster given the input data. This hybrid approach provides a recommendation mechanism for tourist destinations and their cultural heritage.

Idioma originalInglés
Número de artículo81
Páginas (desde-hasta)1-21
Número de páginas21
PublicaciónInformatics
Volumen12
N.º3
DOI
EstadoPublicada - 14 ago. 2025

Huella

Profundice en los temas de investigación de 'A Flexible Profile-Based Recommender System for Discovering Cultural Activities in an Emerging Tourist Destination'. En conjunto forman una huella única.

Citar esto