TY - JOUR
T1 - A Bicycle-Embedded Electromagnetic Harvester for Providing Energy to Low-Power Electronic Devices
AU - Urbina, Robert
AU - Baron, Luis
AU - Carvajal, Juan Pablo
AU - Pérez, Manuel
AU - Paez-Rueda, Carlos Ivan
AU - Fajardo, Arturo
AU - Yamhure, Germán
AU - Perilla, Gabriel
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2023/7
Y1 - 2023/7
N2 - Bicycles are rapidly gaining popularity as a sustainable mode of transportation around the world. Furthermore, the smart bicycle paradigm enables increased use through the Internet of Things applications (e.g., GPS tracking systems). This new paradigm introduces energy autonomy as a new challenge. The energy harvesting technology can capture the energy present in the cycling environment (e.g., kinetic or solar) to give this autonomy. The kinetic energy source is more stable and dense in this environment. There are several wheel kinetic harvesters on the market, ranging from low-complexity dynamos used to power bicycle lights to smart harvester systems that harvest kinetic energy while braking and cycling and store it for when it is needed to power sensors and other electronics loads. Perhaps the hub and the “bottle” dynamos are the most commercially successful systems because of their cost-effective design. Furthermore, the bottle generator is very inexpensive, yet it suffers from significant energy losses and is unreliable in wet weather due to mechanical friction and wheel slippage in the wheel/generator contact. This paper proposes a cost-effective bicycle harvester based on a novel kinetic-electromagnetic transducer. The proposed harvester allows for the generation and storage of harnessed kinetic energy to power low-power electronics loads when the user requires it (e.g., cell phone charging, lighting). The proposed harvester is made up of a power processing unit, a battery, and an optimized transducer based on a Halbach magnet array. An extensive full-wave electromagnetic simulation was used to evaluate the proposed transducer. Circuit simulation was also used to validate the proposed power unit. The proposed harvester generates a simulated output power of 1.17 W with a power processing unit efficiency of 45.6% under a constant bicycle velocity of 30 km/h.
AB - Bicycles are rapidly gaining popularity as a sustainable mode of transportation around the world. Furthermore, the smart bicycle paradigm enables increased use through the Internet of Things applications (e.g., GPS tracking systems). This new paradigm introduces energy autonomy as a new challenge. The energy harvesting technology can capture the energy present in the cycling environment (e.g., kinetic or solar) to give this autonomy. The kinetic energy source is more stable and dense in this environment. There are several wheel kinetic harvesters on the market, ranging from low-complexity dynamos used to power bicycle lights to smart harvester systems that harvest kinetic energy while braking and cycling and store it for when it is needed to power sensors and other electronics loads. Perhaps the hub and the “bottle” dynamos are the most commercially successful systems because of their cost-effective design. Furthermore, the bottle generator is very inexpensive, yet it suffers from significant energy losses and is unreliable in wet weather due to mechanical friction and wheel slippage in the wheel/generator contact. This paper proposes a cost-effective bicycle harvester based on a novel kinetic-electromagnetic transducer. The proposed harvester allows for the generation and storage of harnessed kinetic energy to power low-power electronics loads when the user requires it (e.g., cell phone charging, lighting). The proposed harvester is made up of a power processing unit, a battery, and an optimized transducer based on a Halbach magnet array. An extensive full-wave electromagnetic simulation was used to evaluate the proposed transducer. Circuit simulation was also used to validate the proposed power unit. The proposed harvester generates a simulated output power of 1.17 W with a power processing unit efficiency of 45.6% under a constant bicycle velocity of 30 km/h.
KW - circuit simulation
KW - electromagnetics
KW - energy harvester
KW - magnetic circuits
KW - power conversion
KW - transducers
UR - http://www.scopus.com/inward/record.url?scp=85164791785&partnerID=8YFLogxK
U2 - 10.3390/electronics12132787
DO - 10.3390/electronics12132787
M3 - Article
AN - SCOPUS:85164791785
SN - 2079-9292
VL - 12
JO - Electronics (Switzerland)
JF - Electronics (Switzerland)
IS - 13
M1 - 2787
ER -