Simulación numérica de la trombólisis

Proyecto: Investigación

Detalles del proyecto

Descripción

Desde la década de los 70’s se empezó a investigar sobre formas de aprovechar el ultrasonido para recanalizar vasos sanguíneos obstruidos ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1056/nejmp048249","ISSN":"0028-4793","PMID":"15548774","author":[{"dropping-particle":"","family":"Polak","given":"Joseph F.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"New England Journal of Medicine","id":"ITEM-1","issue":"21","issued":{"date-parts":[["2004"]]},"page":"2154-2155","title":"Ultrasound Energy and the Dissolution of Thrombus","type":"article-journal","volume":"351"},"uris":["http://www.mendeley.com/documents/?uuid=d31ae130-54c6-40be-8d43-346bc1f8e3f2"]}],"mendeley":{"formattedCitation":"[1]","plainTextFormattedCitation":"[1]","previouslyFormattedCitation":"[1]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[1]. Hasta ese entonces, los tratamientos para la trombosis consistían en cirugía vascular e inicios de terapia fibrinolítica. Había evidencias ya de que el ultrasonido reducía la viscosidad de los líquidos y la observación del rompimiento de macromoléculas en campos ultrasónicos. Además, experimentos en trombos de pacientes fallecidos mostraban que estos se disolvían al contacto con una varilla vibrando a frecuencia ultrasónica. Con base en esto, Trubestein et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1042/cs051697s","ISSN":"03010538","PMID":"1071713","abstract":"A new method of destroying thrombi in blood vessels by ultrasound and simultaneously removing them is reported. Experiments were performed in twenty dogs with artificial thrombi in the iliac and femoral arteries and veins. The length of the thrombi ranged from 4 to 5 cm and the age from 12 h to 10 days. The unit used consisted of a generator, a frequency counter, an ultrasonic transducer with the hollow waveguide and a vacuum pump. For protection of the vessel wall the guide is surrounded by a plastic tube. The ultrasonic frequency is 26.5 kHz, the amplitude 25-30 μm. The time needed to destroy the thrombus by ultrasound amd suck out the thrombotic material ranged from 2.5 to 5 min. To check side effects, experiments were performed in forty four dogs. No significant changes were seen in the fibrinolytic system or microscopic structure of the vessel wall after ultrasound.","author":[{"dropping-particle":"","family":"Truebestein","given":"G.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Engel","given":"C.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Etzel","given":"F.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Clinical Science and Molecular Medicine","id":"ITEM-1","issue":"sup.3","issued":{"date-parts":[["1976"]]},"page":"697-698","title":"Thrombolysis by ultrasound","type":"article-journal","volume":"51"},"uris":["http://www.mendeley.com/documents/?uuid=00f47d60-8c30-48ce-b85a-45eb53028377"]}],"mendeley":{"formattedCitation":"[2]","plainTextFormattedCitation":"[2]","previouslyFormattedCitation":"[2]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[2] propusieron lo que en ese entonces era un nuevo método para la destrucción de trombos y su posterior remoción, usando ultrasonido. Los autores experimentaron con perros con trombos de tamaño entre 4 y 5 cm en las venas y arterias iliacas y femorales. Con ultrasonido de frecuencia de 26.5 kHz y una amplitud de 25-30 um, llegaban al trombo con la ayuda de una sonda. Al ser destruido el trombo lo succionaban con una bomba de vacío. El método mostró como ventaja, frente a los que ya existían, el menor tiempo de procedimiento y la prevención de un embolismo pues el trombo disuelto era succionado. Los investigadores, no encontraron efectos adversos y notaron que la única limitación es que sólo se podía efectuar con trombos que llevaran menos de una duración de 10 días de su aparición. Más recientemente Alexandrov et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1056/nejmoa041175","ISSN":"0028-4793","PMID":"15548777","abstract":"BACKGROUND: Transcranial Doppler ultrasonography that is aimed at residual obstructive intracranial blood flow may help expose thrombi to tissue plasminogen activator (t-PA). Our objective was to determine whether ultrasonography can safely enhance the thrombolytic activity of t-PA. METHODS: We treated all patients who had acute ischemic stroke due to occlusion of the middle cerebral artery with intravenous t-PA within three hours after the onset of symptoms. The patients were randomly assigned to receive continuous 2-MHz transcranial Doppler ultrasonography (the target group) or placebo (the control group). The primary combined end point was complete recanalization as assessed by transcranial Doppler ultrasonography or dramatic clinical recovery. Secondary end points included recovery at 24 hours, a favorable outcome at three months, and death at three months. RESULTS: A total of 126 patients were randomly assigned to receive continuous ultrasonography (63 patients) or placebo (63 patients). Symptomatic intracerebral hemorrhage occurred in three patients in the target group and in three in the control group. Complete recanalization or dramatic clinical recovery within two hours after the administration of a t-PA bolus occurred in 31 patients in the target group (49 percent), as compared with 19 patients in the control group (30 percent; P=0.03). Twenty-four hours after treatment of the patients eligible for follow-up, 24 in the target group (44 percent) and 21 in the control group (40 percent) had dramatic clinical recovery (P=0.7). At three months, 22 of 53 patients in the target group who were eligible for follow-up analysis (42 percent) and 14 of 49 in the control group (29 percent) had favorable outcomes (as indicated by a score of 0 to 1 on the modified Rankin scale) (P=0.20). CONCLUSIONS: In patients with acute ischemic stroke, continuous transcranial Doppler augments t-PA-induced arterial recanalization, with a nonsignificant trend toward an increased rate of recovery from stroke, as compared with placebo. Copyright © 2004 Massachusetts Medical Society.","author":[{"dropping-particle":"V.","family":"Alexandrov","given":"Andrei","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Molina","given":"Carlos A.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Grotta","given":"James C.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Garami","given":"Zsolt","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Ford","given":"Shiela R.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Alvarez-Sabin","given":"Jose","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Montaner","given":"Joan","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Saqqur","given":"Maher","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Demchuk","given":"Andrew M.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Moyé","given":"Lemuel A.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Hill","given":"Michael D.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Wojner","given":"Anne W.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"New England Journal of Medicine","id":"ITEM-1","issue":"21","issued":{"date-parts":[["2004"]]},"page":"2170-2178","title":"Ultrasound-Enhanced Systemic Thrombolysis for Acute Ischemic Stroke","type":"article-journal","volume":"351"},"uris":["http://www.mendeley.com/documents/?uuid=13fa5c64-5f17-4f58-bdab-57b7b7f1f90f"]}],"mendeley":{"formattedCitation":"[3]","plainTextFormattedCitation":"[3]","previouslyFormattedCitation":"[3]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[3] realizaron un ensayo clínico en el que trataron pacientes con accidente cerebro-vascular isquémico agudo debido a la obstrucción de la arteria cerebral media con activador de plasminógeno tisular (t-PA, por sus siglas en inglés) con ecografía (ultrasonido) Doppler transcraneal continua de 2 MHz, observando que esta aumenta la recanalización arterial. Como explica Polak ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1056/nejmp048249","ISSN":"0028-4793","PMID":"15548774","author":[{"dropping-particle":"","family":"Polak","given":"Joseph F.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"New England Journal of Medicine","id":"ITEM-1","issue":"21","issued":{"date-parts":[["2004"]]},"page":"2154-2155","title":"Ultrasound Energy and the Dissolution of Thrombus","type":"article-journal","volume":"351"},"uris":["http://www.mendeley.com/documents/?uuid=d31ae130-54c6-40be-8d43-346bc1f8e3f2"]}],"mendeley":{"formattedCitation":"[1]","plainTextFormattedCitation":"[1]","previouslyFormattedCitation":"[1]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[1], se han investigado diferentes aproximaciones para utilizar la energía del ultrasonido para recanalizar vasos sanguíneos obstruidos. Esto se da por un proceso llamado cavitación. El ultrasonido, con suficiente amplitud, puede generar que los gases disueltos en el fluido, en este caso la sangre, formen burbujas que al vibrar y absorber la energía del ultrasonido pueden eventualmente explotar dando lugar a la disolución del trombo, de modo similar a la trombólisis por láser. Esto podría despejar arterias o venas de los trombos sin dañar las paredes del vaso, habría un riesgo menor de daño en el tejido con respecto al uso del láser. Polak explica que a bajas energías se ha mostrado que el ultrasonido promueve el movimiento en el fluido creando una llamada microcorriente y a energías un poco más altas las ondas de ultrasonido pueden tener efectos directos en el enlace del t-PA a la malla de fibrina que forma la obstrucción. Adicionalmente, hay experimentos que han confirmado que la elevación de la temperatura del fluido debido al ultrasonido puede incrementar la tasa de disolución del trombo. Dado que la atenuación de la señal ultrasónica por el cráneo sería significativa, en relación con la investigación de Alexandrov et al., Polak sugiere que en ese caso el efecto local sería crear espacios en la malla de fibrina para facilitar la permeación del t-PA en el trombo. Sería entonces interesante analizar la respuesta del trombo a diferentes frecuencias e intensidades para comprender mejor bajo qué condiciones hay efectivamente una disolución de este. La aproximación que se propone es desde el punto de vista numérico. Una de las primeras aproximaciones numéricas sobre trombólisis encontradas la hace Chapyak et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"author":[{"dropping-particle":"","family":"Theoretical","given":"Applied","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Division","given":"Computational Physics","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Laboratoiy","given":"Los Alamos National","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Alamos","given":"Los","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["0"]]},"page":"84-87","title":"E. J. Chapyak and R P. Godwin","type":"article-journal","volume":"2671"},"uris":["http://www.mendeley.com/documents/?uuid=bd720e97-8ab5-4078-9c1c-df48937e8f96"]}],"mendeley":{"formattedCitation":"[4]","plainTextFormattedCitation":"[4]","previouslyFormattedCitation":"[4]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[4]. Estos investigadores estudian la dinámica de la explosión de una burbuja que ocurre en la trombólisis con láser, y particularmente la partición de energía. Los autores calculan la energía irradiada en medio ciclo, es decir del colapso total a la expansión total o viceversa a partir de la intensidad de la radiación del sonido. Esto lo hacen usando un código propio de física de choque (shock physics) que utiliza Diferencias Finitas, aplicado al colapso de una cavidad esférica. Luego ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1117/12.350979","ISSN":"0277786X","author":[{"dropping-particle":"","family":"Chapyak","given":"Edward J.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Godwin","given":"Robert P.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Lasers in Surgery: Advanced Characterization, Therapeutics, and Systems IX","id":"ITEM-1","issue":"January","issued":{"date-parts":[["1999"]]},"page":"328","title":"Simulations of laser thrombolysis","type":"article-journal","volume":"3590"},"uris":["http://www.mendeley.com/documents/?uuid=4c501dbb-9e24-41fb-8900-cffca8580f7f"]}],"mendeley":{"formattedCitation":"[5]","plainTextFormattedCitation":"[5]","previouslyFormattedCitation":"[5]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[5] repiten la simulación, pero esta vez con la burbuja confinada tanto computacional como experimentalmente con un modelo ficticio de trombo, reportando que no hay una diferencia significativa entre ambos modelos. Estos autores encuentran el porcentaje de energía es irradiado, lo que esperan que sirva para la optimización del diseño de los protocolos de tratamiento de trombólisis con láser. Bajd, et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1016/j.bpj.2013.01.029","ISSN":"00063495","PMID":"23473501","abstract":"A microscale mathematical model of blood clot dissolution based on coarse-grained molecular dynamics is presented. In the model, a blood clot is assumed to be an assembly of blood cells interconnected with elastic fibrin bonds, which are cleaved either biochemically (bond degradation) or mechanically (bond overstretching) during flow-mediated thrombolysis. The effect of a thrombolytic agent on biochemical bond degradation was modeled phenomenologically by assuming that the decay rate of an individual bond is a function of the remaining noncleaved bonds in the vicinity of that bond (spatial corrosion) and the relative stretching of the bond (deformational corrosion). The results of simulations indicate that the blood clot dissolution process progresses by a blood-flow-promoted removal of clot fragments, the sizes of which are flow-dependent. These findings are in good agreement with the results of our recent optical-microscopy experimental studies on a model of blood clot dissolution, as well as with clinical observations. The findings of this study may contribute to a better understanding of the clot fragmentation process and may therefore also help in designing new, safer thrombolytic approaches. © 2013 Biophysical Society.","author":[{"dropping-particle":"","family":"Bajd","given":"Franci","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Serša","given":"Igor","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Biophysical Journal","id":"ITEM-1","issue":"5","issued":{"date-parts":[["2013"]]},"page":"1181-1190","title":"Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis","type":"article-journal","volume":"104"},"uris":["http://www.mendeley.com/documents/?uuid=979016d6-38ca-47a0-9b7f-de6195de2f06"]}],"mendeley":{"formattedCitation":"[6]","plainTextFormattedCitation":"[6]","previouslyFormattedCitation":"[6]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[6] simularon la trombólisis mediada por flujo usando Coarse-grained Molecular Dynamics. Los autores usan la segunda ecuación de Newton asumiendo que en el modelo cinco fuerzas actúan en las células de sangre del trombo, la fuerza de enlace, la fuerza neta de arrastre, la fuerza browniana estocástica, la gravitacional del plasma circundante y la boyante. Los resultados de estos investigadores indican que el proceso de la disolución del trombo progresa por la remoción de fragmentos de coágulos promovidos por el flujo de sangre, la disolución es más rápida a mayor flujo de plasma y la desintegración ocurre como fragmentos de coágulos de tamaños que dependen del flujo. Por supuesto, también contribuyen a la comprensión del proceso de disolución del trombo para diseñar mejores aproximaciones trombolíticas. Khramchenkov et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1088/1742-6596/602/1/012042","ISSN":"17426596","abstract":"Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.","author":[{"dropping-particle":"","family":"Khramchenkov","given":"E.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Khramchenkov","given":"M.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Journal of Physics: Conference Series","id":"ITEM-1","issue":"1","issued":{"date-parts":[["2015"]]},"title":"Numerical simulation of rheological, chemical and hydromechanical processes of thrombolysis","type":"article-journal","volume":"602"},"uris":["http://www.mendeley.com/documents/?uuid=b2a0e527-84da-417e-b7f6-47013aa0656c"]}],"mendeley":{"formattedCitation":"[7]","plainTextFormattedCitation":"[7]","previouslyFormattedCitation":"[7]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[7] desarrollaron un modelo matemático de la disolución de trombo en general, basados en las ecuaciones de convección-difusión. Consideraron la fibrina del trombo como una fase sólida estacionaria y el plasminógeno, sus activadores y la plasmina como fases fluidas disueltas. Basados en un sistema de ecuaciones de filtración en un espacio poroso deformable con un armazón poroso de masa variable, los autores calculan el modelo unidimensional sin considerar las propiedades reológicas y para el modelo tridimensional con la reología elástica y viscoelástica usan los PETSc solvers que son códigos open-source. Calculan valores de concentración en la fase sólida y luego con los nuevos valores resuelven las ecuaciones de concentración en la fase fluida y de las concentraciones se calcula el radio de fibrina. Con base en los datos recibidos se determina la distribución de presiones y encogimiento. Para el cálculo de los agentes líticos o disolutivos se usa el esquema explícito de las ecuaciones de transporte de masa. Dentro de las aproximaciones que usan el ultrasonido se encuentra la de Zhai et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1016/j.ultsonch.2016.05.025","ISSN":"18732828","PMID":"27773228","abstract":"When one beam of ultrasound propagates along a single direction in liquids, the cavitation effect is always confined to a limited volume close to the ultrasonic source. This greatly limits the application of power ultrasound in liquid processing and materials fabrication. In this study, a methodology for applying three orthogonal ultrasounds within liquids has been proposed. By solving the Helmholtz equation, the sound field distribution characteristics are investigated in 1D (one dimensional), 2D (two dimensional) and 3D (three dimensional) ultrasounds at their resonant frequencies, which show that the coherent interaction of three beams of ultrasounds is able to strikingly promote the sound pressure level and reinforce the mean acoustic energy density as compared with that in 1D case. Hence, the potential cavitation volume is enlarged remarkably. This opens new possibilities for the design and optimization of ultrasonic technology in fabricating materials.","author":[{"dropping-particle":"","family":"Zhai","given":"W.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Liu","given":"H. M.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Hong","given":"Z. Y.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Xie","given":"W. J.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Wei","given":"B.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Ultrasonics Sonochemistry","id":"ITEM-1","issued":{"date-parts":[["2017"]]},"page":"130-135","publisher":"Elsevier B.V.","title":"A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds","type":"article-journal","volume":"34"},"uris":["http://www.mendeley.com/documents/?uuid=613bd267-78ad-40f1-90a5-91d74813f545"]}],"mendeley":{"formattedCitation":"[8]","plainTextFormattedCitation":"[8]","previouslyFormattedCitation":"[8]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[8] que estudiaron numéricamente con el software comercial COMSOL, el efecto de propagar el ultrasonido en tres direcciones ortogonales. Los autores mostraron que la interacción coherente entre los tres haces de ultrasonido promueven el nivel de presión del sonido y refuerzan la densidad de energía acústica media con respecto a hacerlo unidireccionalmente. Así, el volumen de cavitación es notablemente agrandado. Si bien estos investigadores enfocan la aplicación a fabricación de materiales puede ser interesante estudiarlo también en el caso de la disolución del trombo. Bajo un campo ultrasónico, Ma et al. ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1016/j.ultsonch.2016.08.021","ISSN":"18732828","PMID":"27590752","abstract":"The objective of this paper is to propose an immersed boundary lattice Boltzmann method (IB-LBM) considering the ultrasonic effect to simulate red blood cell (RBC) aggregation and deformation in ultrasonic field. Numerical examples involving the typical streamline, normalized out-of-plane vorticity contours and vector fields in pure plasma under three different ultrasound intensities are presented. Meanwhile, the corresponding transient aggregation behavior of RBCs, with special emphasis on the detailed process of RBC deformation, is shown. The numerical results reveal that the ultrasound wave acted on the pure plasma can lead to recirculation flow, which contributes to the RBCs aggregation and deformation in microvessel. Furthermore, increasing the intensity of the ultrasound wave can significantly enhance the aggregation and deformation of the RBCs. And the formation of the RBCs aggregation leads to the fluctuated and dropped vorticity value of plasma in return.","author":[{"dropping-particle":"","family":"Ma","given":"Xiaojian","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Huang","given":"Biao","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Wang","given":"Guoyu","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Fu","given":"Xiaoying","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Qiu","given":"Sicong","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Ultrasonics Sonochemistry","id":"ITEM-1","issued":{"date-parts":[["2017"]]},"page":"604-613","publisher":"Elsevier B.V.","title":"Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field","type":"article-journal","volume":"38"},"uris":["http://www.mendeley.com/documents/?uuid=491e538c-7bbe-4ad1-bf64-eeae33e822ae"]}],"mendeley":{"formattedCitation":"[9]","plainTextFormattedCitation":"[9]","previouslyFormattedCitation":"[9]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[9] proponen un método de Lattice-Boltzmann de fronteras inmersas (IB-LBM, por sus siglas en inglés) para simular la agregación y deformación de glóbulos rojos. Sus resultados muestran que la onda ultrasónica que actúa en el plasma puro puede llevar a recirculación del flujo lo que contribuye a la agregación y deformación de los glóbulos rojos en un microvaso. El incremento en la intensidad del ultrasonido puede a su vez incrementar este efecto y la formación de agregación de glóbulos rojos lleva a una fluctuación y caída del valor de vorticidad en el plasma. De los estudios encontrados hasta el momento, no se ha estudiado numéricamente como tal la disolución del trombo por medio de ultrasonido. Se podría pensar entonces en simular la trombólisis usando el ultrasonido con base en los diferentes modelos matemáticos que existen y que dan cuenta del fenómeno de la desintegración del trombo. Una vez definidas las ecuaciones que se consideren apropiadas para describir el fenómeno se puede explorar con que método se puede realizar mejor su resolución, sea este la implementación de un algoritmo con métodos como Galerkin, entre otros o el uso de software open source como OpenFOAM o PETSc solvers. La construcción de los modelos geométricos para hacer la simulación se puede realizar a partir de imágenes de tomografía axial computarizada (TAC) de cuello. Es posible desarrollar un algoritmo de segmentación de estructuras tubulares para extraer las arterias carótidas (la común, la externa y la interna) para construir una triangulación de dichas estructuras usando el algoritmo de los cubos marchantes ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"DOI":"10.1145/37401.37422","ISBN":"0897912276","abstract":"We present a new algorithm, called marching cubes, that creates triangle models of constant density surfaces from 3D medical data. Using a divide-and-conquer approach to generate inter-slice connectivity, we create a case table that defines triangle topology. The algorithm processes the 3D medical data in scan-line order and calculates triangle vertices using linear interpolation. We find the gradient of the original data, normalize it, and use it as a basis for shading the models. The detail in images produced from the generated surface models is the result of maintaining the inter-slice connectivity, surface data, and gradient information present in the original 3D data. Results from computed tomography (CT), magnetic resonance (MR), and single-photon emission computed tomography (SPECT) illustrate the quality and functionality of marching cubes. We also discuss improvements that decrease processing time and add solid modeling capabilities.","author":[{"dropping-particle":"","family":"Lorensen","given":"William E.","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Cline","given":"Harvey E.","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987","id":"ITEM-1","issue":"4","issued":{"date-parts":[["1987"]]},"page":"163-169","title":"Marching cubes: A high resolution 3D surface construction algorithm","type":"article-journal","volume":"21"},"uris":["http://www.mendeley.com/documents/?uuid=e251ea83-1042-4f20-bec9-4877a4ab50ea"]}],"mendeley":{"formattedCitation":"[10]","plainTextFormattedCitation":"[10]","previouslyFormattedCitation":"[10]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[10]. Dicho algoritmo de segmentación se basaría en los trabajos anteriores de los autores que se encuentran disponibles en ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"ISBN":"1424404819","author":[{"dropping-particle":"","family":"Florez-valencia","given":"Leonardo","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Azencot","given":"Jacques","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Vincent","given":"Fabrice","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Orkiszl","given":"Maciej","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Isabelle","given":"E","non-dropping-particle":"","parse-names":false,"suffix":""}],"id":"ITEM-1","issued":{"date-parts":[["2006"]]},"page":"2441-2444","title":"SEGMENTATION AND QUANTIFICATION OF BLOOD VESSELS IN 3D IMAGES USING A RIGHT GENERALIZED CYLINDER STATE MODEL","type":"article-journal"},"uris":["http://www.mendeley.com/documents/?uuid=6ded15d9-4d83-4a39-8080-8059239a1fea"]}],"mendeley":{"formattedCitation":"[11]","plainTextFormattedCitation":"[11]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[11] y ADDIN CSL_CITATION {"citationItems":[{"id":"ITEM-1","itemData":{"author":[{"dropping-particle":"","family":"Flórez-Valencia","given":"L","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Dávila Serrano","given":"E E","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Riveros Reyes","given":"J G","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Bernard","given":"O","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Latt","given":"J","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Malaspinas","given":"O","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Chopard","given":"B","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Courbebaisse","given":"G","non-dropping-particle":"","parse-names":false,"suffix":""},{"dropping-particle":"","family":"Orkisz","given":"M","non-dropping-particle":"","parse-names":false,"suffix":""}],"container-title":"MICCAI-STENT'12 The 1st International MICCAI-Workshop on Computer Assisted Stenting","id":"ITEM-1","issued":{"date-parts":[["2012"]]},"page":"49","title":"Virtual deployment of pipeline flow diverters in cerebral vessels with aneurysms to understand thrombosis","type":"article-journal"},"uris":["http://www.mendeley.com/documents/?uuid=5831deb4-b8b3-4081-a851-887f1f231267"]}],"mendeley":{"formattedCitation":"[12]","plainTextFormattedCitation":"[12]","previouslyFormattedCitation":"[12]"},"properties":{"noteIndex":0},"schema":"https://github.com/citation-style-language/schema/raw/master/csl-citation.json"}[12]. Adicionalmente, si se logra realizar la simulación con un modelo de geometría de un vaso sanguíneo auténtico, sacado del procesamiento de imágenes de pacientes que presenten la patología, nos estaríamos acercando más a la realidad del problema, lo que además de profundizar en la comprensión del proceso de la trombólisis podría permitir pensar a futuro en la personalización de las técnicas usadas en campo. Bibliografía ADDIN Mendeley Bibliography CSL_BIBLIOGRAPHY [1] J. F. Polak, “Ultrasound Energy and the Dissolution of Thrombus,” N. Engl. J. Med., vol. 351, no. 21, pp. 2154–2155, 2004, doi: 10.1056/nejmp048249. [2] G. Truebestein, C. Engel, and F. Etzel, “Thrombolysis by ultrasound,” Clin. Sci. Mol. Med., vol. 51, no. sup.3, pp. 697–698, 1976, doi: 10.1042/cs051697s. [3] A. V. Alexandrov et al., “Ultrasound-Enhanced Systemic Thrombolysis for Acute Ischemic Stroke,” N. Engl. J. Med., vol. 351, no. 21, pp. 2170–2178, 2004, doi: 10.1056/nejmoa041175. [4] A. Theoretical, C. P. Division, L. A. N. Laboratoiy, and L. Alamos, “E. J. Chapyak and R P. Godwin,” vol. 2671, pp. 84–87. [5] E. J. Chapyak and R. P. Godwin, “Simulations of laser thrombolysis,” Lasers Surg. Adv. Charact. Ther. Syst. IX, vol. 3590, no. January, p. 328, 1999, doi: 10.1117/12.350979. [6] F. Bajd and I. Serša, “Mathematical modeling of blood clot fragmentation during flow-mediated thrombolysis,” Biophys. J., vol. 104, no. 5, pp. 1181–1190, 2013, doi: 10.1016/j.bpj.2013.01.029. [7] E. Khramchenkov and M. Khramchenkov, “Numerical simulation of rheological, chemical and hydromechanical processes of thrombolysis,” J. Phys. Conf. Ser., vol. 602, no. 1, 2015, doi: 10.1088/1742-6596/602/1/012042. [8] W. Zhai, H. M. Liu, Z. Y. Hong, W. J. Xie, and B. Wei, “A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds,” Ultrason. Sonochem., vol. 34, pp. 130–135, 2017, doi: 10.1016/j.ultsonch.2016.05.025. [9] X. Ma, B. Huang, G. Wang, X. Fu, and S. Qiu, “Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field,” Ultrason. Sonochem., vol. 38, pp. 604–613, 2017, doi: 10.1016/j.ultsonch.2016.08.021. [10] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3D surface construction algorithm,” Proc. 14th Annu. Conf. Comput. Graph. Interact. Tech. SIGGRAPH 1987, vol. 21, no. 4, pp. 163–169, 1987, doi: 10.1145/37401.37422. [11] L. Florez-valencia, J. Azencot, F. Vincent, M. Orkiszl, and E. Isabelle, “SEGMENTATION AND QUANTIFICATION OF BLOOD VESSELS IN 3D IMAGES USING A RIGHT GENERALIZED CYLINDER STATE MODEL,” pp. 2441–2444, 2006. [12] L. Flórez-Valencia et al., “Virtual deployment of pipeline flow diverters in cerebral vessels with aneurysms to understand thrombosis,” MICCAI-STENT’12 1st Int. MICCAI-Workshop Comput. Assist. Stenting, p. 49, 2012, [Online]. Available: https://www.creatis.insa-lyon.fr/site/sites/default/files/thrombus.pdf.
EstadoActivo
Fecha de inicio/Fecha fin13/06/2212/05/25

Palabras clave

  • Mecánica de fluidos
  • Procesamiento de imágenes
  • Simulación numérica
  • Trombólisis
  • Trombosis

Estado del Proyecto

  • En Ejecución

Financiación de proyectos

  • Interna
  • Pontificia Universidad Javeriana

Huella digital

Explore los temas de investigación que se abordan en este proyecto. Estas etiquetas se generan con base en las adjudicaciones/concesiones subyacentes. Juntos, forma una huella digital única.