Puntos fijos para operadores de tipo contractivo dependiendo de dos funciones.

  • Rojas Santana, Edixon Manuel (Investigador principal)

Proyecto: Investigación

Detalles del proyecto

Descripción

Las aplicaciones de tipo contractivo cuya desigualdad depende de una función extra han extendido y generalizado muchos resultados clásicos en la teoría métrica del punto fijo. La primera de estas nuevas clases de aplicaciones fueron introducidas en 2009 por A. Beiranvand et al, lo que extendió el Principio de Contracción de Banach y el Teorema de Edelstein. El propósito de este proyecto es analizar la existencia y unicidad de puntos fijos para aplicaciones de tipo contractivo dependiendo de dos funciones definidas sobre espacios métricos completos. También se pretende estudiar resultados de localización de puntos fijos para estas aplicaciones.
EstadoFinalizado
Fecha de inicio/Fecha fin01/10/1331/03/15

Financiación de proyectos

  • Interna
  • PONTIFICIA UNIVERSIDAD JAVERIANA