Detalles del proyecto
Descripción
We expect to prove that the scope of inequality $\nu_{1}(g)\geq\Big(\max_{x\in\partial M}e^{-f(x)}\Big)\nu_{1}(g_{0})$ is not as broad as the result of Proposition $2$ suggests in . We aim to show that this inequality cannot be strict by proving that the inequality $Q_{g}(\phi) \geq\Big(\displaystyle\max_{\partial M}e^{-f}\Big)Q_{g_{0}}(\phi)$ is in fact an equality, and that this equality only occurs if the function $f$ is constant on $\partial M$; this would suggest that the lower bound in Example $7$ in may need to be more carefully stated or perhaps revised and that the conclusion of Proposition $4$ in may not be correct. Similarly, more general applications of this inequality may need to be handle with care since, as it is showed, the result is not as general as it seems to be proposed.
Estado | No iniciado |
---|
Palabras clave
- Geometrical analysis
- Normalized steklov eigenvalue
- Steklov boundary conditions
Estado del Proyecto
- En Ejecución
Financiación de proyectos
- Interna
- Pontificia Universidad Javeriana
Huella digital
Explore los temas de investigación que se abordan en este proyecto. Estas etiquetas se generan con base en las adjudicaciones/concesiones subyacentes. Juntos, forma una huella digital única.