About a Proposition on Escobar's paper “The Geometry of the First Non-zero Stekloff Eigenvalue”

Proyecto: Investigación

Detalles del proyecto

Descripción

We expect to prove that the scope of inequality $\nu_{1}(g)\geq\Big(\max_{x\in\partial M}e^{-f(x)}\Big)\nu_{1}(g_{0})$ is not as broad as the result of Proposition $2$ suggests in . We aim to show that this inequality cannot be strict by proving that the inequality $Q_{g}(\phi) \geq\Big(\displaystyle\max_{\partial M}e^{-f}\Big)Q_{g_{0}}(\phi)$ is in fact an equality, and that this equality only occurs if the function $f$ is constant on $\partial M$; this would suggest that the lower bound in Example $7$ in may need to be more carefully stated or perhaps revised and that the conclusion of Proposition $4$ in may not be correct. Similarly, more general applications of this inequality may need to be handle with care since, as it is showed, the result is not as general as it seems to be proposed.
EstadoNo iniciado

Palabras clave

  • Geometrical analysis
  • Normalized steklov eigenvalue
  • Steklov boundary conditions

Estado del Proyecto

  • En Ejecución

Financiación de proyectos

  • Interna
  • Pontificia Universidad Javeriana

Huella digital

Explore los temas de investigación que se abordan en este proyecto. Estas etiquetas se generan con base en las adjudicaciones/concesiones subyacentes. Juntos, forma una huella digital única.