TY - JOUR
T1 - Transcriptome network data in larval zebrafish (Danio rerio) following exposure to the phenylpyrazole fipronil
AU - Eadie, Ashley
AU - Vásquez, Isabel Cristina
AU - Liang, Xuefang
AU - Wang, Xiaohong
AU - Souders, Christopher L.
AU - Chehouri, Jana El
AU - Hoskote, Rohit
AU - Feswick, April
AU - Cowie, Andrew M.
AU - Loughery, Jennifer R.
AU - Martyniuk, Christopher J.
N1 - Publisher Copyright:
© 2020
PY - 2020/12
Y1 - 2020/12
N2 - Fipronil is a phenylpyrazole pesticide that is used in both residential and agricultural applications. Fipronil is detected in run-off and water systems that are near areas in which the pesticide has been applied. The pesticide acts to antagonize gamma aminobutyric acid receptors, leading to over-excitation in the central nervous system. Fipronil has relatively high toxicity to fish, but the mechanisms underlying the toxicity are not well understood in embryonic stages. Zebrafish embryos were exposed to a single concentration of fipronil for 48 h at ∼3-4 h-post-fertilization. Following a 7-day depuration phase, transcriptome and behavioral analyses were conducted. Transcriptomics identified neural processes as those differentially expressed with different doses of fipronil (0.2 µg, 200 µg and 2 mg fipronil/L). Gene networks associated with astrocyte differentiation, myelination, neural tube development, brain stem response, innervation, nerve regeneration, astrocyte differentiation, among other pathways were altered with exposure. In addition, miRNA-related events are disrupted by fipronil exposure and genes associated with primary or pri-miRNA processing were increased in larval fish exposed to the pesticide. These data present putative mechanisms associated with neurological impacts at later ages of zebrafish. This is important because it is not clear how early exposure to pesticides like fipronil affect central nervous system function and organisms later in life.
AB - Fipronil is a phenylpyrazole pesticide that is used in both residential and agricultural applications. Fipronil is detected in run-off and water systems that are near areas in which the pesticide has been applied. The pesticide acts to antagonize gamma aminobutyric acid receptors, leading to over-excitation in the central nervous system. Fipronil has relatively high toxicity to fish, but the mechanisms underlying the toxicity are not well understood in embryonic stages. Zebrafish embryos were exposed to a single concentration of fipronil for 48 h at ∼3-4 h-post-fertilization. Following a 7-day depuration phase, transcriptome and behavioral analyses were conducted. Transcriptomics identified neural processes as those differentially expressed with different doses of fipronil (0.2 µg, 200 µg and 2 mg fipronil/L). Gene networks associated with astrocyte differentiation, myelination, neural tube development, brain stem response, innervation, nerve regeneration, astrocyte differentiation, among other pathways were altered with exposure. In addition, miRNA-related events are disrupted by fipronil exposure and genes associated with primary or pri-miRNA processing were increased in larval fish exposed to the pesticide. These data present putative mechanisms associated with neurological impacts at later ages of zebrafish. This is important because it is not clear how early exposure to pesticides like fipronil affect central nervous system function and organisms later in life.
KW - Agrochemical
KW - Environmental toxicology
KW - Gene network
KW - Neurotoxicity
KW - Pesticide
UR - http://www.scopus.com/inward/record.url?scp=85093665170&partnerID=8YFLogxK
U2 - 10.1016/j.dib.2020.106413
DO - 10.1016/j.dib.2020.106413
M3 - Article
AN - SCOPUS:85093665170
SN - 2352-3409
VL - 33
JO - Data in Brief
JF - Data in Brief
M1 - 106413
ER -