Thermal Impact on Powertrain Efficiency Improvement for Two Wheels Electric Vehicle

Y. Bello, T. Azib, C. Larouci, M. Boukhnifer, N. Rizoug, D. Patino, F. Ruiz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The energy required by a two wheels electric vehicle (TWEV) to complete a trip is lower than common electric cars or internal combustion vehicles. However, there are considerable losses along the electric driving chain. Those losses added to a limited energy storage cause an impact over the TWEV autonomy. This appears to be the main factor, which limits the large-scale market penetration of TWEV. This paper aims to analyze the multiphysic behavior of the complete power-chain in order to study its effect on its energetic losses. Even when many dynamics model oriented to hardware design approach can represent the come multiphysic behavior of one or two elements of the power train, the approach proposed in this paper presents a balanced representation of all power chain able to be used in real-time optimization. This study will help to improve the capabilities of an onboard TWEV efficiency estimator system which uses a longitudinal force model. As a conclusion, the error of autonomy estimation is compared with thermal considerations and without them according to different operating points.

Original languageEnglish
Title of host publicationProceedings
Subtitle of host publicationIECON 2019 - 45th Annual Conference of the IEEE Industrial Electronics Society
PublisherIEEE Computer Society
Pages2744-2750
Number of pages7
ISBN (Electronic)9781728148786
DOIs
StatePublished - Oct 2019
Event45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019 - Lisbon, Portugal
Duration: 14 Oct 201917 Oct 2019

Publication series

NameIECON Proceedings (Industrial Electronics Conference)
Volume2019-October

Conference

Conference45th Annual Conference of the IEEE Industrial Electronics Society, IECON 2019
Country/TerritoryPortugal
CityLisbon
Period14/10/1917/10/19

Fingerprint

Dive into the research topics of 'Thermal Impact on Powertrain Efficiency Improvement for Two Wheels Electric Vehicle'. Together they form a unique fingerprint.

Cite this