Multimodal model for the Spanish sentiment analysis in a tourism domain

Julian Monsalve-Pulido, Carlos Alberto Parra, Jose Aguilar

Research output: Contribution to journalArticlepeer-review

Abstract

The problem of sentiment analysis of tourism data focuses on the analysis of the multimodal characteristics of the data generated digitally by tourists on each platform or social network. Generally, their opinions have multimodal characteristics, since they combine text, images or numbers (ratings), which represents an important challenge in sentiment analysis that requires new models or multimodal data classification techniques. This work proposes a multimodal sentiment analysis model for data in Spanish in the tourism domain composed of four main phases (extraction, classification, fusion, visualization), and a transversal phase to evaluate the quality of the multimodal sentiment analysis process. Thus, the multimodal sentiment analysis model integrates a data quality model to improve multimodal sentiment analysis tasks, but in addition, the linguistic resource "SenticNet 5" is adapted to Spanish. The model was validated by applying various classification metrics, and the classification results were compared to a manually labeled dataset (TASS) using two machine learning classification algorithms. The first was Random Forest, where the manually labeled dataset has a 50% F1 score compared to the adapted SenticNet automatically generated dataset, which has a 71% F1 score measure and a 70% accuracy. The classification generated by SenticNet is 21% higher than that of the TASS data set. The second algorithm applied was Support Vector Machine (SVM), which classified the SenticNet-generated dataset with an F1 score of 72% versus the manually created dataset with 57.7% (14.3% more effective). In the fusion tests of the multimodal sentiment inputs, the accuracy results for text were 65%, for images 33%, and the fusion of both was 71%. In general, it was identified that the opinions made by users composed of text in Spanish and images improve polarity identification if an independent classification is carried out, and then apply a polarity fusion process.

Original languageEnglish
Article number46
JournalSocial Network Analysis and Mining
Volume14
Issue number1
DOIs
StatePublished - Dec 2024

Keywords

  • Multimodal model
  • Opinion mining
  • Sentiment analysis
  • Spanish language
  • Tourism

Fingerprint

Dive into the research topics of 'Multimodal model for the Spanish sentiment analysis in a tourism domain'. Together they form a unique fingerprint.

Cite this