Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia

Oscar Ariza, Ingrid Casallas, Arturo Fajardo

Research output: Contribution to journalArticlepeer-review

Abstract

Aloe Barbadensis Miller, commonly known as Aloe vera, has been widely used in different applications, such as medicinal treatments and cosmetic products. However, its transportation and handling present challenges due to oxidation and property loss caused by direct environmental exposure. A strategy to mitigate these effects is dehydration, where different industrial-scale methods such as freeze-drying, spraying, refractory windows, and convective drying can be applied. Despite their effectiveness, those dehydration techniques are both energetically and economically costly. Solar drying technology offers a cost-effective, lower-energy alternative addressing sustainability, socioeconomic, scientific progress, and integrated sustainable development challenges. Nevertheless, solar drying through direct sunlight exposure has been minimally explored for drying high-water-content products like Aloe vera, potentially due to the inherent challenges of drying under uncontrolled environmental conditions. In response, this paper introduces a methodology for pre-treating and pre-drying Aloe vera gel using a low-cost solar dryer prototype, achieving up to 50% water activity reduction in experimental tests under uncontrolled conditions in Colombia, South America. The proposed prototype features a drying cabinet with energy autonomy and forced convection. The experimental evaluation compares the quality of pre-dried Aloe vera gel with freeze-dried samples, demonstrating comparable attributes under favorable environmental conditions. The results demonstrate the feasibility of pre-drying Aloe vera gel within 13 to 48 h, with a maximum drying rate of 0.38 g/min. During this process, water activity decreased from an initial value of 0.975 to a final value ranging between 0.472 and 0.748. Furthermore, the quality of the dehydrated gel was assessed through color analysis, comparing it with a freeze-dried sample. Subsequent color analysis of the freeze-dried samples revealed minor changes in product quality compared to those dried using the proposed solar drying method. These results demonstrate the effectiveness of the proposed solar dryer in pre-dehydrating Aloe vera gel, yielding characteristics similar to those achieved through conventional methods.

Original languageEnglish
Article number3392
JournalSustainability (Switzerland)
Volume16
Issue number8
DOIs
StatePublished - Apr 2024

Keywords

  • aloe vera
  • drying technology
  • pre-drying
  • solar dryer
  • sustainable drying

Fingerprint

Dive into the research topics of 'Innovative Solar Dryer for Sustainable Aloe Vera Gel Preservation in Colombia'. Together they form a unique fingerprint.

Cite this