Fairness and Consensus in an Asynchronous Opinion Model for Social Networks

Jesús Aranda, Sebastián Betancourt, Juan Fco Díaz, Frank Valencia

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a DeGroot-based model for opinion dynamics in social networks. A community of agents is represented as a weighted directed graph whose edges indicate how much agents influence one another. The model is formalized using labeled transition systems, henceforth called opinion transition systems (OTS), whose states represent the agents’ opinions and whose actions are the edges of the influence graph. If a transition labeled (i, j) is performed, agent j updates their opinion taking into account the opinion of agent i and the influence i has over j. We study (convergence to) opinion consensus among the agents of strongly-connected graphs with influence values in the interval (0, 1). We show that consensus cannot be guaranteed under the standard strong fairness assumption on transition systems. We derive that consensus is guaranteed under a stronger notion from the literature of concurrent systems; bounded fairness. We argue that bounded-fairness is too strong of a notion for consensus as it almost surely rules out random runs and it is not a constructive liveness property. We introduce a weaker fairness notion, called m-bounded fairness, and show that it guarantees consensus. The new notion includes almost surely all random runs and it is a constructive liveness property. Finally, we consider OTS with dynamic influence and show convergence to consensus holds under m-bounded fairness if the influence changes within a fixed interval [L, U] with 0 < L < U < 1. We illustrate OTS with examples and simulations, offering insights into opinion formation under fairness and dynamic influence.

Original languageEnglish
Title of host publication35th International Conference on Concurrency Theory, CONCUR 2024
EditorsRupak Majumdar, Alexandra Silva
PublisherSchloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
ISBN (Electronic)9783959773393
DOIs
StatePublished - Sep 2024
Event35th International Conference on Concurrency Theory, CONCUR 2024 - Calgary, Canada
Duration: 09 Sep 202413 Sep 2024

Publication series

NameLeibniz International Proceedings in Informatics, LIPIcs
Volume311
ISSN (Print)1868-8969

Conference

Conference35th International Conference on Concurrency Theory, CONCUR 2024
Country/TerritoryCanada
CityCalgary
Period09/09/2413/09/24

Keywords

  • asynchrony
  • consensus
  • DeGroot
  • fairness
  • Social networks

Fingerprint

Dive into the research topics of 'Fairness and Consensus in an Asynchronous Opinion Model for Social Networks'. Together they form a unique fingerprint.

Cite this