Experimental parameter tuning of a portable water generator system based on a thermoelectric cooler

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

Atmospheric Water Generators (AWG) are a promising technology solution to the water scarcity in the world. However, their main drawback is the high power consumption. This paper presents the experimental optimization process of a Portable Atmospheric Water Generator (PAWG) prototype based on a thermometric cooler. This process was developed by an exhaustive search of the experimental solution space, which was generated by parametric sweeps of two parameters (i.e., control voltages in the PAWG), which are related to the power consumption of the PAWG and the physical variables involved in the water condensation process (i.e., the airflow and the temperature on the water condenser element). As a result, we found the existence of two optimal operation points under a constant value of relative humidity; one of them maximizes the amount of water generated, and the other one maximizes the system performance (i.e., the ratio between the generated water and consumed power in mL/Wh). The resulting Figures of Merit (FoMs) of the PAWG prototype were 0.33 mL/h of generated water and 0.22 mL/Wh for the system performance.

Original languageEnglish
Article number141
Pages (from-to)1-14
Number of pages14
JournalElectronics (Switzerland)
Volume10
Issue number2
DOIs
StatePublished - 02 Jan 2021

Keywords

  • Atmospheric water generator
  • Parameter tuning
  • Peltier effect
  • Vapor water condensation

Fingerprint

Dive into the research topics of 'Experimental parameter tuning of a portable water generator system based on a thermoelectric cooler'. Together they form a unique fingerprint.

Cite this