A volumetric multi-head attention strategy for lung nodule classification in CT

Alejandra Moreno, Andrea Rueda, Fabio Martinez

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

Pulmonary nodules are the principal lung cancer indicator, whose malignancy is mainly related to their size, morphological and textural features. Computational deep representations are today the most common tool to characterize lung nodules but remain limited to capturing nodule variability. In consequence, nodule malignancy classification from CT observations remains an open problem. This work introduces a multi-head attention network that takes advantage of volumetric nodule observations and robustly represents textural and geometrical patterns, learned from a discriminative task. The proposed approach starts by computing 3D convolutions, exploiting textural patterns of volumetric nodules. Such convolutional representation is enriched from a multi-scale projection using receptive field blocks, followed by multiple volumetric attentions that exploit non-local nodule relationships. These attentions are fused to enhance the representation and achieve more robust malignancy discrimination. The proposed approach was validated on the public LIDC-IDRI dataset, achieving a 91.82% in F1-score, 91.19% in sensitivity, and 92.43% in AUC for binary classification. The reported results outperform the state-of-the-art strategy with 3D nodule representations.

Original languageEnglish
Title of host publicationMedical Imaging 2023
Subtitle of host publicationComputer-Aided Diagnosis
EditorsKhan M. Iftekharuddin, Weijie Chen
PublisherSPIE
ISBN (Electronic)9781510660359
DOIs
StatePublished - 2023
EventMedical Imaging 2023: Computer-Aided Diagnosis - San Diego, United States
Duration: 19 Feb 202323 Feb 2023

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12465
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2023: Computer-Aided Diagnosis
Country/TerritoryUnited States
CitySan Diego
Period19/02/2323/02/23

Keywords

  • CT scans
  • Lung cancer
  • Volumetric attention modules
  • nodule classification
  • receptive fields

Fingerprint

Dive into the research topics of 'A volumetric multi-head attention strategy for lung nodule classification in CT'. Together they form a unique fingerprint.

Cite this