A hybrid language model based on a combination of N-grams and stochastic context-free grammars

Diego Linares, José Miguel Benedí, Joan Andreu Sánchez

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

In this paper, a hybrid language model is defined as a combination of a word-based n-gram, which is used to capture the local relations between words, and a category-based stochastic context-free grammar (SCFG) with a word distribution into categories, which is defined to represent the long-term relations between these categories. The problem of unsupervised learning of a SCFG in General Format and in Chomsky Normal Form by means of estimation algorithms is studied. Moreover, a bracketed version of the classical estimation algorithm based on the Earley algorithm is proposed. This paper also explores the use of SCFGs obtained from a treebank corpus as initial models for the estimation algorithms. Experiments on the UPenn Treebank corpus are reported. These experiments have been carried out in terms of the test set perplexity and the word error rate in a speech recognition experiment.

Original languageEnglish
Pages (from-to)113-127
Number of pages15
JournalACM Transactions on Asian Language Information Processing
Volume3
Issue number2
DOIs
StatePublished - Jun 2004

Keywords

  • Language model
  • Stochastic context-free grammar

Fingerprint

Dive into the research topics of 'A hybrid language model based on a combination of N-grams and stochastic context-free grammars'. Together they form a unique fingerprint.

Cite this